

Available online at www.sciencedirect.com

Journal of the European Ceramic Society 26 (2006) 1969-1971

www.elsevier.com/locate/jeurceramsoc

Microwave dielectric characteristics of SrLaGaO₄ and SrNdGaO₄ ceramics

X.Q. Liu*, X.M. Chen

Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China Available online 27 October 2005

Abstract

SrLnGaO₄ (Ln = La and Nd) ceramics with K₂NiF₄ structure were prepared by solid-state reaction approach, and the microwave dielectric properties and microstructures were characterized. The SrLaGaO₄ and SrNdGaO₄ ceramics with minor secondary phase, Sr₃Ga₂O₆, were obtained by sintering at 1250–1350 °C for 3 h, and good microwave dielectric characteristics were achieved: the ceramics had (1) ε = 20.3, $Q \times f$ = 16,219 GHz, and τ_f = -33.5 ppm/°C for SrLaGaO₄; and (2) ε = 21.4, $Q \times f$ = 16,650 GHz, and τ_f = 7.1 ppm/°C for SrNdGaO₄. © 2005 Elsevier Ltd. All rights reserved.

Keywords: Dielectric properties; Sintering; X-ray methods; K2NiF4 structure

1. Introduction

The ABCO₄ oxide crystals (A = Sr, Ca, B = rare earth, C = Al, Ga) with tetragonal K₂NiF₄ structure have attracted much attention because of their potential applications as substrates for high-temperature superconductor thin films.^{1,2} The dielectric constants of these compounds are around 20 combined with very low loss at microwave frequencies,¹ and their ceramics might be promising new candidates of low-loss microwave dielectric ceramics for resonator and filter applications. Compared with the typical low loss microwave dielectric ceramics such as Ba(Mg_{1/3}Ta_{2/3})O₃,³ Ba(Zn_{1/3}Ta_{2/3})O₃,⁴ and LaAlO₃,⁵ ABCO₄ ceramics may have the merit of easy preparation because of their lower melt points. In the previous work, the MLnAlO₄ (M = Sr, Ca, Ln = La, Nd, Sm, Y) ceramics have been prepared and the microwave dielectric properties have been characterized.^{6–8} The microwave dielectric properties of SrLnAlO₄ ceramics are $\varepsilon = 17-19$, $Q \times f = 25,000-55,000$ GHz, and $\tau_f \approx 4$ ppm/°C, and those of CaLnAlO₄ ceramics are $\varepsilon = 18-19$, $Q \times f = 18,000-51,000$ GHz, and $\tau_f = -52-6 \text{ ppm/}^\circ\text{C}$.

On the other hand, the dielectric loss of SrLaGaO₄ single crystal is lower than that of SrLaAlO₄ crystal at microwave frequencies,¹ so one could expect that the same case should be occurred at the corresponding ceramics. Till now, the dielectric

0955-2219/\$ - see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.jeurceramsoc.2005.09.043

properties of SrLnGaO₄ ceramics have not been characterized yet.

In the present work, SrLnGaO₄ (Ln = La and Nd) ceramics are prepared by the solid-state reaction method, and the microwave dielectric properties are characterized together with the microstructures.

2. Experimental procedure

Reagent-grade SrCO₃ (99.5% purity), La₂O₃ or Nd₂O₃ (99.99 or 99% purity) and Ga₂O₃ (99.9% purity) in 2:1:1 mole ratio were mixed by ball milling in deionized water using zirconia balls for 24 h. The slurry was dried and then calcined at 1100 °C for 3 h to prepare SrLnAlO₄ powders. The calcined powders, with 6 wt.% PVA (polyvinyl alcohol) added, were pressed into disc compacts of 12 mm in diameter and around 5 mm in height, and these compacts were sintered at temperatures from 1250 to 1350 °C in air for 3 h.

The microstructures were observed by scanning electron microscope (SEM, FMI Sirion FISEM), and the phase constitutions of the present ceramics were characterized by X-ray diffraction (XRD, RIGAKU D/max 2550 PC) analysis using Cu K α radiation for crushed and ground powders, also the cell parameters of ceramics could be refined by the least square method using software MDI JADE accompanied with the instrument.

The microwave dielectric properties were evaluated at about 10 GHz by Hakki and Coleman's resonator method,⁹ and the

^{*} Corresponding author. Tel.: +86 571 87951410; fax: +86 571 8795 2112. *E-mail address:* xqliu@zju.edu.cn (X.Q. Liu).

Table 1

temperature coefficient of resonant frequency was estimated from the equation

$$\tau_f = -\frac{\tau_\varepsilon}{2} - \alpha \tag{1}$$

where α is the linear expansion coefficient ($\alpha \approx 10 \text{ ppm/}^{\circ}\text{C}$),¹ and τ_s the temperature coefficient of dielectric constant evaluated at 1 MHz by a LCR meter (HP 4284A) equipped with a thermostat range from 25 to 85 °C.

3. Results and discussion

The single-phase SrLaGaO₄ and SrNdGaO₄ powders could not be obtained by calcining at 1300 °C when the powder was shrunk to a bulk, and XRD results show that the phase constitution of powders calcined at 1100 °C is almost the same as that of 1300 °C, so the calcining temperature is selected as 1100 °C. Actually, the single-phase gallate is not easy to be obtained by conventional solid-state reaction.¹⁰ In the perovskite system, the stability of perovskite structure could be characterized by the tolerance factor and electronegativity difference, and so does the ABCO₄ structure, for this structure is consisted by perovskite interleaved with rock-salt layer. The tolerant factors of ABCO₄ should be defined as:

$$t = \frac{d_{\rm A/B-O}}{\sqrt{2}d_{\rm C-O}} \tag{2}$$

where $d_{A/B-O}$ and d_{C-O} represent the mean equilibrium bond lengths between metal atoms and oxygen given by the sum of the room-temperature ionic radii.¹¹ According to Eq. (2), the tolerance factors of SrLaGaO₄ and SrNdGaO₄ are both smaller than those of SrLaAlO₄ and SrNdAlO₄ (0.93, 0.92 versus 0.97, 0.96), and the electronegativity differences of SrLaGaO₄ and SrNdGaO₄ are both smaller than those of SrLaAlO₄ and SrNdAlO₄ (2.07 versus 2.25). These results show that the crystal structures of gallate are less stable than those of aluminate in ABCO₄ series. The XRD patterns of SrLaGaO₄ and SrNdGaO₄ ceramics sintered at 1250–1350 °C for 3 h are shown in Fig. 1, and they indicate that the primary SrLnGaO₄ phase is co-existent with Sr₃Ga₂O₆ (JCPDF No. 24-1200) secondary phase in the present ceramics. The percentage densities of SrLaGaO₄ and SrNdGaO₄ ceramics are shown in Table 1, and the sintered densities are all relatively low.

Microwave dielectric properties of SrLaGaO₄ and SrNdGaO₄ ceramics sintered at various temperatures

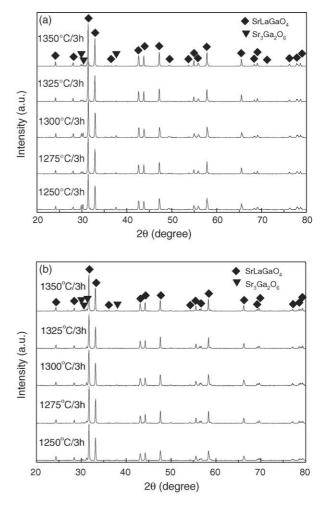


Fig. 1. XRD patterns of (a) SrLaGaO₄ and (b) SrNdGaO₄ ceramics sintered at different temperatures for 3 h.

The microwave dielectric properties of SrLaGaO₄ and SrNdGaO₄ ceramics are shown in Table 1. The dielectric constant varies slightly with the sintering temperature, and the dependence of dielectric constant on sintering temperature is consistent with that of bulk densities. The values of dielectric constant for SrLaGaO₄ and SrNdGaO₄ ceramics are around 20 and 21, respectively. The $Q \times f$ values of SrLaGaO₄ and SrNdGaO₄ ceramics increase with increasing sintering temperature initially and then decrease. The maximum $Q \times f$

Cell volume (Å³) Composition Sintering condition (°C/3h) Relative density (%) $tan \delta$ $Q \times f(GHz)$ $\tau_f (\text{ppm/}^\circ\text{C})$ ε -40.1SrLaGaO₄ 1250 93.6 187.61 20.4 0.00066 15,803 94.0 187.70 20.3 0.00064 16,219 SrLaGaO₄ 1275 -33.593.3 SrLaGaO₄ 1300 187.38 20.10.00071 14,676 -40.5SrLaGaO₄ 1325 93.5 187.72 20.10.00072 14,458 -30.8SrLaGaO₄ 1350 93.4 187.71 19.9 0.00073 14,274 -33.21250 91.2 SrNdGaO₄ 182.80 21.6 0.00063 15,714 6.6 SrNdGaO₄ 1275 91.2 182.68 21.7 0.00063 15,778 10.3 1300 90.9 182.88 21.4 0.0006 16,650 7.1 SrNdGaO₄ 1325 90.7 21.3 0.0006 11.5 SrNdGaO₄ 182.80 16.667 15,937 SrNdGaO₄ 1350 90.5 182.93 21.3 0.00063 6.9

values for SrLaGaO₄ and SrNdGaO₄ ceramics are 16,219 and 16,667 GHz, respectively. The low $Q \times f$ values should be originated from the low relative densities and the presence of the secondary phase. The temperature coefficients of resonant frequency τ_f of SrLaGaO₄ and SrNdGaO₄ ceramics ranged from -40 to -30 ppm/°C and from 6.6 to 11.5 ppm/°C, respectively (Table 1). According to Cockbain,¹² the temperature coefficient of dielectric constant can be approximately expressed as the following when $\varepsilon > 10$ and tan $\delta < 0.1\%$:

$$\tau_{\varepsilon} \approx G - \alpha(\varepsilon + 1) \tag{3}$$

$$G = \frac{\varepsilon}{3\alpha_{\rm m}} \left(\left(\frac{\partial \alpha_{\rm m}}{\partial V} \right)_T \left(\frac{\partial V}{\partial T} \right)_P + \left(\frac{\partial \alpha_{\rm m}}{\partial T} \right)_V \right) \tag{4}$$

where α is the linear expansion coefficient, α_m the polarizability of a macroscopic small sphere of volume *V*, and *T* the temperature. Combining Eqs. (1) and (3), the τ_f value should be in direct proportion to the product of α and ε , and so does the product of cell volume and dielectric constant for the linear expansion coefficient will increase with increasing cell volume. The dependency of τ_f on sintering temperature has almost the same tendency of that of the product of cell volume and dielectric constant on sintering temperature. The different τ_f of SrLaGaO₄ and SrNdGaO₄ ceramics should originate from the different stress states,^{2,10,11} and the details will be involved in our further work.

4. Conclusions

SrLaGaO₄ and SrNdGaO₄ ceramics with minor Sr₃Ga₂O₆ secondary phase had been obtained by sintering at 1250– 1350 °C. The dielectric constant varied slightly with sintering temperature and the variation rule was consistent with that of the density. The $Q \times f$ values of SrLaGaO₄ and SrNdGaO₄ ceramics increased initially with increasing sintering temperature and then decreased. The dependence of τ_f on sintering temperature had almost the same tendency as that of the cell volume and dielectric constant product on sintering temperature. The good microwave dielectric properties such as $\varepsilon = 20.3$, $Q \times f = 16,219$ GHz, and $\tau_f = -33.5$ ppm/°C for SrLaGaO₄ and $\varepsilon = 21.4$, $Q \times f = 16,650$ GHz, and $\tau_f = 7.1$ ppm/°C for SrNdGaO₄ were achieved.

Acknowledgements

This work was supported by National Science Foundation of China under grant number 50272058, National Science Foundation for Distinguished Young Scientists under grant number 50025205 and Chinese National Key Project for Fundamental Researches under grant number 2002CB613302.

References

- Pajaczkowska, A. and Gloubokov, A., Synthesis growth and characterization of tetragonal ABCO₄ crystals. *Prog. Crystal. Charact.*, 1998, 36, 123–162.
- Britten, J. F., Czochralski-grown SrLaGaO₄. Acta Crystallogr., 1995, C51, 1975–1977.
- Chen, X. M., Suzuki, Y. and Sato, N., Sinterability improvement of Ba(Mg_{1/3}Ta_{2/3})O₃ dielectric ceramics. *J. Mater. Sci.: Mater. Electron.*, 1994, 5, 244–247.
- Kawashima, S., Nishida, N., Ueda, I. and Ouchi, H., Ba(Zn_{1/3}Ta_{2/3})O₃ ceramics with low dielectric loss at microwave frequencies. *J. Am. Ceram. Soc.*, 1983, **66**, 421–423.
- Cho, S. Y., Kim, I. T. and Hong, K. S., Microwave dielectric properties and applications of rare-earth aluminates. *J. Mater. Res.*, 1999, 14, 114–119.
- Liu, X. Q., Chen, X. M. and Xiao, Y., Preparation and characterization of LaSrAlO₄ microwave dielectric ceramics. *Mater. Sci. Eng. B*, 2003, B103, 276–280.
- Chen, X. M., Xiao, Y., Liu, X. Q. and Hu, X., SrLnAlO₄ (Ln = Nd and Sm) microwave dielectric ceramics. *J. Electroceram.*, 2003, **10**, 111– 115.
- Xiao, Y., Chen, X. M. and Liu, X. Q., Microstructures and microwave dielectric characteristics of CaRAlO₄ (R=Nd, Sm Y) ceramics with tetragonal K₂NiF₄ structure. *J. Am. Ceram. Soc.*, 2004, **87**, 2143– 2146.
- Hakki, B. W. and Coleman, P. D., A dielectric resonant method of measuring inductive capacitance in the millimeter range. *IRE Trans. Microwave Theory Tech.*, 1960, 402–410, MTT-8.
- Vasilechko, L. O., Fedorchuk, A. A., Savitskii, D. I., Matkovskii, A. O. and Ubizskii, S. B., Crystal structure of LaCaGaO₄ and NdSrGaO₄. *Inorg. Mater.*, 1995, **31**, 1128–1131.
- Magrez, A., Cochet, M., Joubert, O., Louarn, G., Ganne, M. and Chauvet, O., High internal stresses in Sr_{1-x}La_{1+x}Al_{1-x}Mg_xO₄ solid solution (0 ≤ x ≤ 0.7) characterized by infrared and Raman spectroscopies coupled with crystal structure refinement. *Chem. Mater.*, 2001, **13**, 3893–3898.
- Cockbain, A. G. and Harrop, P. G., The temperature coefficient of capacitance. Br. J. Appl. Phys., Ser. 2, 1968, 1, 1109–1115.